Abstract: Data for Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah
This data file was used to estimate the performance of the Alphasense OPC-N3 and PMS5003 sensor in measuring ambient PM10, especially during dust events, and to obtain correction factors to correct the PMS5003 data. During April 2022, the OPC-N3 and PMS5003 sensors were collocated with federal equivalent method (FEM)at two Utah Division of Air Quality (UDAQ) sites: Hawthorne (HW) station and Environmental Quality (EQ) station. One residential site (RS)was also tested, with OPC-N3 and PMS5003 collocated with GRIMM portable aerosol spectrophotometer. The FEM data (PM2.5 and PM10 concentrations) and meteorological parameters (wind speed, wind direction, relative humidity, and temperature) for the two UDAQ sites were downloaded from the EPA website. The Excel sheet contained all the raw data and the processed data. The FEM, OPC-N3, and PMS5003 measurements were labeled as FEM-YYY, OPC-YYY, and PMS-YYY, where YYY represents the sites nomenclature, i.e., HW, EQ, and RS. The sheet labeled “HW”, “RS”, and,” EQ” contained the raw measurements (meteorological, PM10, and PM2.5 (whenever applicable)) for the sites. The sheet” PM-ratio-based correlation” provided the data used to get the PM-ratio-based correlation. Briefly, based on the ratio of FEM-HW PM2.5/PM10, the FEM-HW and PMS-HW PM10 measurements were segregated into six bins: PM2.5/PM10: <0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.7, and >0.7. For each bin, the co-located PMS-HW PM10 concentrations were linearly regressed against the FEM-HW PM10 concentrations to obtain correction factors (slope and intercept). These correction factors were later used to correct the PMS PM10 concentrations at the other two locations (RS and EQ), presented in the sheets with labels “RS correction using GRIMM ratio”, “RS correction using opc ratio” and “EQ corrected using EQ ratio”. Each sheet also includes the calculation of RMSE and NRMSE of OPC-YYY and PMS-YYY against FEM-YYY, with YYY as the site nomenclature.
The dataset contains Gas Chromatography (GC) data pertaining to the bulk electrolytic experiments, biocatalytic, organocatalytic reactions, and standards used in the study. The standard GC files calibrate the sensitivity of the column in the Gas Chromatograph to 1-heptanol, heptanal, and the corresponding alpha-hydrazino aldehyde. This information is used to quantify the peaks of 1-heptanol and heptanal obtained in the bulk electrolytic experiments and the alpha-hydrazino aldehyde obtained in the organocatalytic step.
This file contains experimental data from the Ph.D. thesis “Mechanisms Governing Ash Aerosol Formation and Deposition during Solid Fuel Combustion” at the University of Utah. The data include particle sizes, weights, and compositions of ash aerosols and deposits formed in the combustion of a range of fossil and biomass solid fuels under a wide range of conditions. Operation pressure, fuel composition and combustor scale are changed across these tests. These experimental data can provide information and inputs for further studies, such as modeling the ash deposition process, in the future.
Research background: Concern about global warming has called for new combustion systems to be used in order to reduce CO2 emissions from coal-fired power generation. Pressurized oxy-coal combustion coupled with carbon capture and storage as well as co-firing biomass with coal are gaining more interest in building new power plants and retrofitting existing plants. The combustion conditions of these systems could be significantly changed and thus affect the ash formation and deposition. The experimental work of this thesis consists of combustion tests at various scales and conditions, namely, on a 100 kWth rated oxy-fuel combustor (OFC), a 300 kWth rated entrained flow pressurized reactor (EFPR), a 1.5 MWth rated horizontal multifuel combustor (L1500) and a 500 MWe full-size utility boiler (Hunter). The solid fuels involved in these tests include pulverized coal, torrefied wood, blend fuels of the coal and wood, and coal with K/Cl/S additives. In each test, iso-kinetically sampled ash aerosols are analyzed in terms of particle size distributions and size-segregated compositions. Ash deposition rates are measured using a surface-temperature-controlled probe which simulates the deposition process on superheater tubes.
This dataset is a custom Kraken2 formatted database for the identification of Fungi from shotgun metagenomic data. Kraken2 is a k-mer based read classifier (Wood et al. 2019; https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1891-0). The dataset was built with the default k-mer length (k=35) from all publicly available fungal genomes at JGI Mycocosm ( https://mycocosm.jgi.doe.gov/mycocosm/home), and all archaea, bacteria, viral, plasmid, human, fungi, plant, and protozoa genomes, as well as the UniVec Core and nt reference database at NCBI ( https://www.ncbi.nlm.nih.gov/). The reference genomes and sequences were downloaded from JGI and NCBI in March 2020.
This dataset contains the materials necessary to reproduce the study submitted to Remote Sensing: "Tradeoffs Between UAS Spatial Resolution and Accuracy for Deep Learning Semantic Segmentation Applied to Wetland Vegetation Species Mapping". This includes the raw imagery output from the camera aboard the unoccupied aerial vehicle, the Red-Edge MX, captured over the Howard Slough Waterfowl Management Area, Utah, in August of 2020, resampled images, code to resample the images, a link to ground reference data, and the training and testing data used for the convolutional neural network in the study.
This dataset accompanies the research article entitled, "Ground Motion Amplification at Natural Rock Arches in the Colorado Plateau ," where we analyzed 13 sandstone arches in Utah, computing site-to-reference spectral amplitude ratios from continuous ambient seismic data and comparing these to spectral ratios during earthquakes and teleseismic activity. Included in this dataset are the arch vibration data.
We discuss a new set of ~ 500 numerical n-body calculations designed to constrain the masses and bulk densities of Styx, Nix, Kerberos, and Hydra. Comparisons of different techniques for deriving the semimajor axis and eccentricity of the four satellites favor methods relying on the theory of Lee & Peale (2006), where satellite orbits are derived in the context of the restricted three body problem (Pluto, Charon, and one massless satellite). In each simulation, we adopt the nominal satellite masses derived in Kenyon & Bromley (2019b), multiply the mass of at least one satellite by a numerical factor f >= 1, and establish whether the system ejects at least one satellite on a time scale <= 4.5~Gyr. When the total system mass is large (f >> 1), ejections of Kerberos are more common. Systems with lower satellite masses (f ~ 1) usually eject Styx. In these calculations, Styx often signals an ejection by moving to higher orbital inclination long before ejection; Kerberos rarely signals in a useful way. The n-body results suggest that Styx and Kerberos are more likely to have bulk densities comparable with water ice, rho_SK <= 2 g/cm^3, than with rock. A strong upper limit on the total system mass, M_SNKH <= 9.5 x 10^19 g, also places robust constraints on the average bulk density of the four satellites, rho_SNKH <= 1.4 g/cm^3. These limits support models where the satellites grow out of icy material ejected during a major impact on Pluto or Charon.
Detailed ground-based observations of snow are scarce in remote regions such as the Arctic. Here, Multi-Angle Snowflake Camera (MASC) measurements of over 55,000 solid hydrometeors — obtained during a two-year period from August 2016 to August 2018 at Oliktok Point, Alaska — are analyzed and compared to similar measurements from an earlier experiment at Alta, Utah. In general, distributions of hydrometeor fall speed, fall orientation, aspect ratio, flatness, and complexity (i.e., riming degree) were observed to be very similar between the two locations, except that Arctic hydrometeors tended to be smaller. In total, the slope parameter defining a negative exponential of the size distribution was approximately 50% steeper in the Arctic as at Alta. 66% of particles were observed to be rimed or moderately rimed, with some suggestion that riming is favored by weak boundary layer stability. On average, the fall speed of rimed particles was not notably different from aggregates. However, graupel density and fall speed increase as cloud temperatures approach the melting point.
This dataset includes a 3-D model of the Courthouse Mesa toppling rock slab instability in Utah. These data were used in conjunction with ambient seismic array data to conduct modal analyses and improve the structural characterization of the rock slope instability. Data include a 3-D model of the rock slope instability (.stl) and a COMSOL Multiphysics project file showing the boundary conditions and solutions of the best model run (.mph). This dataset accompanies the research article entitled "Rock slope instability structural characterization using array-based modal analysis."