Dataset

Dataset for: Howard Slough Waterfowl Management Area Multispectral Imagery at Various Resolutions and Convolutional Neural Network Training Data

Public

This dataset contains the materials necessary to reproduce the study submitted to Remote Sensing: "Tradeoffs Between UAS Spatial Resolution and Accuracy for Deep Learning Semantic Segmentation Applied to Wetland Vegetation Species Mapping". This includes the raw imagery output from the camera aboard the unoccupied aerial vehicle, the Red-Edge MX, captured over the Howard Slough Waterfowl Management Area, Utah, in August of 2020, resampled images, code to resample the images, a link to ground reference data, and the training and testing data used for the convolutional neural network in the study.

Last modified
  • 12/05/2023
Creator
Contributors
Subject
Language
Identifier
Keyword
Date created
Location
  • Howard Slough Waterfowl Management Area, Utah, United States
Resource type
Source
  • Library of Congress Subject Headings (LCSH)
License

Relations

Items