This HENRIQUEZ_readme20230725.txt file was updated on 20231027 by Kaylee Alexander. ------------------- GENERAL INFORMATION ------------------- 1. Title of Dataset Geochemical Isotopic Database (Neodymium, Strontium, and Zircon Hafnium) of Permian to Jurassic Igneous Samples Related to the Mongol-Okhotsk Ocean in Central Mongolia, South Russia, and NE China 2. Author Information Principal Investigator Contact Information Name: Cari L. Johnson Institution: University of Utah Address: 115 S 1460 E, Salt Lake City, UT 84112 Email: cari.johnson@utah.edu ORCID: 0000-0002-6260-0736 Co-investigator Contact Information Name: Peter C. Lippert Institution: University of Utah Address: 115 S 1460 E, Salt Lake City, UT 84112 Email: pete.lippert@utah.edu ORCID: 0000-0003-1744-9982 Co-investigator Contact Information Name: Laura Webb Institution: University of Vermont Address: Delehanty Hall, Burlington, VT 05401 Email: lewebb@uvm.edu ORCID: 0000-0002-0597-5793 Associate Contact Information Name: Susana Henriquez Institution: California State University San Bernardino Address: Department of Geology, 5500 University Parkway, San Bernardino, CA 92407 Email: Susana.henriquez@csusb.edu ORCID: 0000-0001-5461-9050 Associate Contact Information Name: Gerel Ochir Institution: Mongolian University of Science and Technology Address: Baga toiruu 34, Sukhbaatar district Ulaanbaatar, Mongolia 14191 Email: gerel@must.edu.mn ORCID: 0000-0002-5909-8503 Associate Contact Information Name: Sarah Lambart Institution: University of Utah Address: 15 S 1460 E, Salt Lake City, UT 84112 Email: sarah.lambart@utah.edu ORCID: 0000-0002-3636-7950 2. Date of data collection (single date, range, approximate date) 20200501-20230618 4. Geographic location of data collection (where was data collected?): Mongolia 5. Information about funding sources that supported the collection of the data: NSF EAR-TECTONICS 1917645 Collaborative Research: "Suturing the Heart of Asia: Tectonics of the Mongol-Okhotsk Ocean Closure" PD/PI Name: Cari L. Johnson, Peter Lippert (University of Utah) in collaboration with Laura E. Webb (University of Vermont). -------------------------- SHARING/ACCESS INFORMATION -------------------------- 1. Licenses/restrictions placed on the data: Public Domain – This data is free of copyright restrictions. 2. Links to publications that cite or use the data: Henriquez, Susana; Ochir, Gerel.; Lambart, Sarah; Johnson, Cari L.; Webb, Laura E.; Lippert, Peter C. 2023. "From an accretionary margin to a sediment-rich collision: Spatiotemporal evolution of the magmatism during the closure of the Mongol-Okhotsk Ocean." Submitted to Gondwana Research. 3. Links to other publicly accessible locations of the data: N/A 4. Links/relationships to ancillary data sets: N/A 5. Was data derived from another source? Yes If yes, list source(s): Chen, Z.G., Zhang, L.C., Lu, B.Z., Li, Z.L., Wu, H.Y., Xiang, P., & Huang, S.W. (2010). Geochronology and geochemistry of the Taipingchuan copper–molybdenum deposit in Inner Mongolia, and its geological significances. Acta Petrologica Sinica, 26 (05), 1437-1449. (in Chinese with English abstract) Chen, Z., Zhang, L., Wan, B., Wu, H., & Cleven, N. (2011). Geochronology and geochemistry of the Wunugetushan porphyry Cu–Mo deposit in NE china, and their geological significance. Ore Geology Reviews, 43(1), 92–105. https://doi.org/10.1016/j.oregeorev.2011.08.007. Donskaya, T. V., Windley, B. F., Mazukabzov, A. M., Kröner, A., Sklyarov, E. V., Gladkochub, D. P., Ponomarchuk, V. A., Badarch, G., Reichow, M. K., & Hegner, E. (2008). Age and evolution of late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia. Journal of the Geological Society, 165(1), 405–421. https://doi.org/10.1144/0016-76492006-162. Donskaya, T. V., Gladkochub, D. P., Mazukabzov, A. M., & Ivanov, A. V. (2013). Late Paleozoic – Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. Journal of Asian Earth Sciences, 62, 79–97. https://doi.org/10.1016/j.jseaes.2012.07.023. Ganbat, A., Tsujimori, T., Miao, L., Safonova, I., Pastor-Galán, D., Anaad, C., Baatar, M., Aoki, S., Aoki, K., & Savinskiy, I. (2021). Late Paleozoic–Early Mesozoic granitoids in the Khangay-Khentey basin, Central Mongolia: Implication for the tectonic evolution of the Mongol-Okhotsk Ocean margin. Lithos, 404–405, 106455. https://doi.org/10.1016/j.lithos.2021.106455. Gou, J., Sun, D.-Y., Ren, Y.-S., Liu, Y.-J., Zhang, S.-Y., Fu, C.-L., Wang, T.-H., Wu, P.-F., & Liu, X.-M. (2013). Petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli–Erguna area of Inner Mongolia, China: Geochronological, geochemical and Hf isotopic evidence. Journal of Asian Earth Sciences, 67–68, 114–137. https://doi.org/10.1016/j.jseaes.2013.02.016. Guo, Z.J., Li, J.W., Huang, G.J., Guan, J.D., Dong, X.Z., Tian, J., Yang, Y.C., She, H.Q., Xiang, A.P., & Kang, Y.J. (2014). Sr–Nb–Pb–Hf isotopic characteristics of ore-bearing granites in the Honghuaerji scheelite deposit, Inner Mongolia. Geol. China, 04 (2014), pp. 1226-1241. (in Chinese with English abstract) Jahn, B., Capdevila, R., Liu, D., Vernon, A., & Badarch, G. (2004). Sources of Phanerozoic granitoids in the transect Bayanhongor–Ulaan Baatar, Mongolia: Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, 23(5), 629–653. https://doi.org/10.1016/S1367-9120(03)00125-1. Jahn, B. M., Litvinovsky, B. A., Zanvilevich, A. N., & Reichow, M. (2009). Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: Evolution, petrogenesis and tectonic significance. Lithos, 113(3–4), 521–539. https://doi.org/10.1016/j.lithos.2009.06.015. Li, L., Sun, F., Li, B., Xu, Q., Zhang, Y., & Qian, Y. (2016). Early Mesozoic Southward Subduction of the Eastern Mongol-Okhotsk Oceanic Plate: Evidence from Zircon U-Pb-Hf Isotopes and Whole-rock Geochemistry of Triassic Granitic Rocks in the Mohe Area, NE China: Mongol-Okhotsk ocean; Southward subduction. Resource Geology, 66(4), 386–403. https://doi.org/10.1111/rge.12106. Li, S.-Q., Hegner, E., Yang, Y.-Z., Wu, J.-D., & Chen, F. (2014). Age constraints on late Mesozoic lithospheric extension and origin of bimodal volcanic rocks from the Hailar basin, NE China. Lithos, 190–191, 204–219. https://doi.org/10.1016/j.lithos.2013.12.009. Li, Y., Xu, W.-L., Wang, F., Tang, J., Zhao, S., & Guo, P. (2017a). Geochronology and geochemistry of late Paleozoic–early Mesozoic igneous rocks of the Erguna Massif, NE China: Implications for the early evolution of the Mongol–Okhotsk tectonic regime. Journal of Asian Earth Sciences, 144, 205–224. https://doi.org/10.1016/j.jseaes.2016.12.005. Li, Y., Xu, W.-L., Wang, F., Pei, F.-P., Tang, J., & Zhao, S. (2017b). Triassic volcanism along the eastern margin of the Xing’an Massif, NE China: Constraints on the spatial–temporal extent of the Mongol–Okhotsk tectonic regime. Gondwana Research, 48, 205–223. https://doi.org/10.1016/j.gr.2017.05.002. Litvinovsky, B. A., Jahn, B., Zanvilevich, A. N., Saunders, A., Poulain, S., Kuzmin, D. V., Reichow, M. K., & Titov, A. V. (2002). Petrogenesis of syenite–granite suites from the Bryansky Complex (Transbaikalia, Russia): Implications for the origin of A-type granitoid magmas. Chemical Geology, 189(1–2), 105–133. https://doi.org/10.1016/S0009-2541(02)00142-0. Liu, H., Li, Y., Wu, L., Huangfu, P., & Zhang, M. (2018). Geochemistry of high-Nb basalt-andesite in the Erguna Massif (NE China) and implications for the early Cretaceous back-arc extension. Geological Journal, 54(1), 291–307. https://doi.org/10.1002/gj.3176. Lykhin, D.A., Kostitsyn, Yu.A., Kovalenko, V.I., Yarmolyuk, V.V., Salnikova, E.B., Kotov, A.B., Kovach, V.P., Ripp, G.S. (2001). Ore-bearing magmatism in the Yermakovka berillium deposit in the western Transbaikalia: age, magma sources and interrelations with ore- forming processes. Geology of the Ore Deposits 43, 52–70. Lykhin, D. A., Kovalenko, V. I., Yarmolyuk, V. V. (2004). Age, Composition, and Sources of Ore-Bearing Mag- matism of the Orot Beryllium Deposit in Western Trans-baikalia, Russia. Geol. Ore Dep. 46, 108–124. Mi, K., Liu, Z., Li, C., Liu, R., Wang, J., & Peng, R. (2017). Origin of the Badaguan porphyry CuMo deposit, Inner Mongolia, northeast China: Constraints from geology, isotope geochemistry and geochronology. Ore Geology Reviews, 81, 154–172. https://doi.org/10.1016/j.oregeorev.2016.09.029. Mao, A.-Q., Sun, D.-Y., Yang, D.-G., Tang, Z.-Y., & Zheng, H. (2020). Petrogenesis and tectonic implications of Early Cretaceous volcanic rocks from the Shanghulin Basin within the north-western Great Xing’an Range, NE China: Constraints from geochronology and geochemistry. Geological Journal, 55(5), 3476–3496. https://doi.org/10.1002/gj.3583. Sheldrick, T. C., Barry, T. L., Millar, I. L., Barfod, D. N., Halton, A. M., & Smith, D. J. (2020). Evidence for southward subduction of the Mongol-Okhotsk oceanic plate: Implications from Mesozoic adakitic lavas from Mongolia. Gondwana Research, 79, 140–156. https://doi.org/10.1016/j.gr.2019.09.007. Sodnom, K., Ochir, G., Danzan, C., Dash, B.-U., & Baatar, M. (2012). Origin of the Early Mesozoic Bogd Uul granite pluton, Ulaanbaatar area, Mongolia. Bulletin Nagoya University Museum, 28, 45–59. Sui, Z.M., & Xu, X.C. (2010). Sr–Nd isotopic characteristics of Jurassic granites in northeastern Da Hinggan Mountains and their geological implications. Geology in China, 37 (1) (2010), pp. 48-55. (in Chinese with English abstract) Tang, J., Xu, W.-L., Wang, F., Wang, W., Xu, M.-J., & Zhang, Y.-H. (2014). Geochronology and geochemistry of Early–Middle Triassic magmatism in the Erguna Massif, NE China: Constraints on the tectonic evolution of the Mongol–Okhotsk Ocean. Lithos, 184–187, 1–16. https://doi.org/10.1016/j.lithos.2013.10.024. Tang, J., Xu, W.-L., Wang, F., Zhao, S., & Li, Y. (2015). Geochronology, geochemistry, and deformation history of Late Jurassic–Early Cretaceous intrusive rocks in the Erguna Massif, NE China: Constraints on the late Mesozoic tectonic evolution of the Mongol–Okhotsk orogenic belt. Tectonophysics, 658, 91–110. https://doi.org/10.1016/j.tecto.2015.07.012. Tang, J., Xu, W.-L., Wang, F., Zhao, S., & Wang, W. (2016). Early Mesozoic southward subduction history of the Mongol–Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Research, 31, 218–240. https://doi.org/10.1016/j.gr.2014.12.010. Vorontsov, A. A., Yarmolyuk, V. V., Lykhin, D. A., Dril, S. I., Tatarnikov, S. A., & Sandimirova, G. P. (2007). Magmatic sources and geodynamics of the early Mesozoic Northern Mongolia-Western Transbaikalia rift zone. Petrology, 15(1), 35–57. https://doi.org/10.1134/S0869591107010031. Wang, T., Tong, Y., Xiao, W., Guo, L., Windley, B. F., Donskaya, T., Li, S., Tserendash, N., & Zhang, J. (2021). Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: Magmatic migration based on a large archive of age data. National Science Review, nwab210. https://doi.org/10.1093/nsr/nwab210. Wang, W., Tang, J., Xu, W.-L., & Wang, F. (2015). Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif, northeast China: Petrogenesis and implications for the tectonic evolution of the Mongol–Okhotsk suture belt. Lithos, 218–219, 73–86. https://doi.org/10.1016/j.lithos.2015.01.012. Wang, W., Xu, W., Wang, F., & Meng, E. (2012). Zircon U-Pb Chronology and Assemblages of Mesozoic Granitoids in the Manzhouli-Erguna Area, NE China_ Constraints on the Regional Tectonic Evolution. Geological Journal China University, 18, 88–105. Wu, F., Sun, D., Li, H., Jahn, B., & Wilde, S. (2002). A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1–2), 143–173. https://doi.org/10.1016/S0009-2541(02)00018-9. Yarmolyuk, V. V., Nikiforov, A. V., Kovalenko, V. I., Ivanov, V. G., & Zhuravlev, D. Z. (2001). Sources of the Late Mesozoic Carbonatites of Western Transbaikalia: Trace-Element and Sr–Nd Isotopic Data. Geochemistry International, 39, 20. Zhang, L., Zhou, X., Ying, J., Wang, F., Guo, F., Wan, B., & Chen, Z. (2008). Geochemistry and Sr–Nd–Pb–Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range, NE China: Implications for their origin and mantle source characteristics. Chemical Geology, 256(1), 12–23. https://doi.org/10.1016/j.chemgeo.2008.07.004. Zhao, P., Xu, B., & Jahn, B. (2017). The Mongol-Okhotsk Ocean subduction-related Permian peraluminous granites in northeastern Mongolia: Constraints from zircon U-Pb ages, whole-rock elemental and Sr-Nd-Hf isotopic compositions. Journal of Asian Earth Sciences, 144, 225–242. https://doi.org/10.1016/j.jseaes.2017.03.022. Zhu, M., Zhang, F., Miao, L., Baatar, M., Anaad, C., Yang, S., & Li, X. (2016). Geochronology and geochemistry of the Triassic bimodal volcanic rocks and coeval A-type granites of the Olzit area, Middle Mongolia: Implications for the tectonic evolution of Mongol–Okhotsk Ocean. Journal of Asian Earth Sciences, 122, 41–57. https://doi.org/10.1016/j.jseaes.2016.03.001. Zhu, M., Wakabayashi, J., Pastor-Galán, D., Zhang, F., Ganbat, A., Miao, L., Yang, S., & Wang, Z. (2023). Large-scale Permo-Triassic back-arc extensions of the Mongol- Okhotsk Ocean. GSA Bulletin. https://doi.org/10.1130/B36644.1. 6. Recommended citation for the data: Henriquez, Susana; Ochir, Gerel.; Lambart, Sarah; Johnson, Cari L.; Webb, Laura E.; Lippert, Peter C. 2023. "Geochemical Isotopic Database (Neodymium, Strontium, and Zircon Hafnium) of Permian to Jurassic Igneous Samples Related to the Mongol-Okhotsk Ocean in Central Mongolia, South Russia, and NE China." The Hive: University of Utah Research Data Repository. DOI. --------------------- DATA & FILE OVERVIEW --------------------- 1. File List 20230626-Isotopic-Data.csv 20230626-Isotopic-Sources.csv 20230626-Isotopic-Codebook.csv 2. Relationship between files: Isotopic data in this database includes 863 samples from 34 papers and three previously published compilations. For each sample, this database provides location, age, and reference information presented in the first columns. Locations are recorded in latitude and longitude (WGS84). The information about the location source uses the same criteria used for the elemental geochemical database (“GPS”, “Figure-Polygon” and “Figure-Point”). Age is provided according to the original source and includes two general scenarios: an age with uncertainty at 2σ level and a general estimation for the age with no associated error. Sm-Nd and Rb-Sr data are based on whole rock analysis. Lu-Hf data are based on zircon analysis. Sm-Nd data includes Sm and Nd in ppm, 147Nd/144Nd and 143Nd/144Nd in ratios, Nd uncertainties at 2σ level, and Nd values in the epsilon notation as presented in the data source. Rb-Sr data include Rb and Sr in ppm; 87Rb/86Sr, 87Sr/86Sr, and initial 87Sr/86Sr in ratios, and Sr uncertainties at 2σ level. Lu-Hf data includes 176Yb/177Hf, 176Lu/177Hf, and 176Hf/177Hf rations and their uncertainties at 2σ level, the initial 176/177Hf ratio, Hf values in the epsilon notation and Hf uncertainties at 1σ and 2σ level, all as presented in the data source. Uncertainties related to the data location and heterogenous data distribution should be considered. Samples for the two batholiths in Mongolia are concentrated in central Mongolia and include Sm-Nd and Lu-Hf data. In the Erguna and Xing’an magmatic provinces, available samples provide mainly Lu-Hf data which are relatively better distributed than in the other regions. 3. Additional related data collected that was not included in the current data package: N/A 4. Are there multiple versions of the dataset? No -------------------------- METHODOLOGICAL INFORMATION -------------------------- 1. Description of methods used for collection/generation of data: Data was compiled based on available publications and previous compilations. 2. Methods for processing the data: N/A 3. Instrument- or software-specific information needed to interpret the data: N/A 4. Standards and calibration information, if appropriate: N/A 5. Environmental/experimental conditions: N/A 6. Describe any quality-assurance procedures performed on the data: N/A 7. People involved with sample collection, processing, analysis and/or submission: N/A ----------------------------------------- DATA-SPECIFIC INFORMATION FOR Geochemical_isotopic_database_HIVE.xlsx ----------------------------------------- 1. Number of variables: 35 2. Number of cases/rows: 866 3. Variable List A Latitude Coordinate information for the sample B Longitude Coordinate information for the sample C Location-Type Information used for finding coordinates for the samples. The three possible values are: “GPS”, “Figure-Point”, and “Figure-Polygon”. Samples with a location in a coordinate system were transformed to decimal degrees (WGS84) and classified as “GPS”. Samples individually identified in a georeferenced geologic map were approximately located after georeferencing the map in Google Earth or ArcGis (“Figure-Point”). Samples identified with a polygon in a georeferenced map (through age, body name or unidentified sample locations), but without more detailed information were approximately located in the middle of the corresponding polygon after georeferencing the map in Google Earth or ArcGis (“Figure-Polygon”). D Location/Body-Name Description of the location or name of the igneous body if available E Age Age value or range in million of years (Ma) F Age-number Numeric value for the age of the sample G Age-Error Numeric value for the error associated with the sample H Reference Original Reference for geochemical isotopic data I Compilation-Reference Reference of the compilation that includes the original data J Reference-Age Numeric value for the age of the sample K Comment Additional information about location or other information about the sample. L 176Yb/177Hf Isotope ratio, Ytterbium-176/Hafnium-177 M 2s_Yb/Hf 2-sigma error for the Ytterbium/Hafnium isotopic ratio N 176Lu/177Hf Isotope ratio, Lutetium-176/Hafnium-177 O 2s_Lu/Hf 2-sigma error for the Lutetium/Hafnium isotopic ratio P 176Hf/177Hf Isotope ratio, Hafnium-176/Hafnium-177 Q 2s_Hf/Hf 2-sigma error for the Hafnium/Hafnium isotopic ratio R EHf(0) Initial epsilon Hafnium values S EHf(t) Epsilon Hafnium values T 1s_EHf 1-sigma error for the Epsilon Hafnium values U 2s_EHf 2-sigma error for the Epsilon Hafnium values V 176Yb/177Hfi Initial Isotope ratio, Ytterbium-176/Hafnium-177 W f(Lu/Hf) Fractionation factor. [(Lu-177/177-Hf)sample/(Lu-177/177-Hf)CHUR]-1 X Sm Samarium in ppm Y Nd Neodymium in ppm Z 147Sm/144Nd Isotope ratio, Samarium-147/Neodymium-144 AA 143Nd/144Nd Isotope ratio, Neodymium-143/Neodymium-144 AB 2s_Nd 2-sigma error for the Neodymium/Neodymium isotopic ratio AD ENd(t) Epsilon Neodymium values AE Rb Rubidium in ppm AF Sr Strontium in ppm AG 87Rb/86Sr Isotope ratio, Rubidium-87/Strontium-86 AI 87Sr/86Sr Isotope ratio, Strontium-87/Strontium-86 AJ 87Sr/86Sri Initial Isotope ratio, Strontium-87/Strontium-86 4. Missing data codes: N/A 5. Specialized formats of other abbreviations used: “NI” – No Information