The objective of using the wireless sensors was to improve understanding of the heterogeneity of healthcare worker (HCW) contact with patients and the physical environment in patients’ rooms. The framework and design were based on contact networks with a) nodes defined by HCW’s, rooms, and items in the room and b) edges defined by HCW’s in the room, near the bed, and touching items. Nodes had characteristics of HCW role and room number. Edges had characteristics of day, start time, and duration. Thus, patterns and heterogeneity could be understood within contexts of time, space, roles, and patient characteristics. At the University of Utah Hospital Cardiovascular ICU (CVICU), a 20-bed unit, we collected data for 54 days. HCW contact with patients was measured using wireless sensors to capture time spent in patient rooms as well as time spent near the patient bed. HCW contact with the physical environment was measured using wireless sensors on the following items in patient rooms: door, sink, toilet, over-bed table, keyboard, vital signs monitor touchscreen, and cart. HCW’s clipped a sensor to their clothing or lanyard. This dataset contains cleaned event-level data processed from sensor pings of RFD reads between healthcare worker worn sensors and environmental sensors placed in facility using methods described in the "Data Cleaning Steps" section.
The objective of using the wireless sensors was to improve understanding of the heterogeneity of healthcare worker (HCW) contact with patients and the physical environment in patients’ rooms. The framework and design were based on contact networks with a) nodes defined by HCW’s, rooms, and items in the room and b) edges defined by HCW’s in the room, near the bed, and touching items. Nodes had characteristics of HCW role and room number. Edges had characteristics of day, start time, and duration. Thus, patterns and heterogeneity could be understood within contexts of time, space, roles, and patient characteristics. At the University of Utah Hospital Cardiovascular ICU (CVICU), a 20-bed unit, we collected data for 54 days. HCW contact with patients was measured using wireless sensors to capture time spent in patient rooms as well as time spent near the patient bed. HCW contact with the physical environment was measured using wireless sensors on the following items in patient rooms: door, sink, toilet, over-bed table, keyboard, vital signs monitor touchscreen, and cart. HCW’s clipped a sensor to their clothing or lanyard. This dataset contains cleaned sensor pings of RFD reads between healthcare worker worn sensors and environmental sensors placed in facility using methods described in the "Data Cleaning Steps" section.
A comprehensive geochemical and stratigraphic study of Cretaceous coal-bearing strata in Utah and western Colorado was performed to evaluate geologic trends in REE-enrichment, as well as elucidate enrichment mechanisms. Preliminary portable X-ray fluorescence (pXRF) analyses (n = 5659) was combined with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) analyses (n = 135) on particularly REE-enriched samples. Sampling and analyses from active and historic mines as well as nearby cores and outcrops were performed with an emphasis on sedimentary, stratigraphic, geographic, and mining context.
This study aims to quantify rare earth element enrichment within coal and coal-adjacent strata in the Uinta Region of Utah and western Colorado. Rare earth elements are a subset of critical minerals used for renewable energy technology in the transition toward carbon-neutral energy. This data contains samples from seven active mines and seven stratigraphically complete cores within the Uinta Region, geochemically evaluated via portable X-ray fluorescence (n=3,113) and inductively coupled plasma-mass spectrometry (n=143) elemental abundance methods. Historical evaluations of geochemical data on Uinta Region coal and coal-adjacent data are sparse, emphasizing the statistical significance of this study’s analyses. These results support the utilization of active mines and coal processing waste piles for the future of domestic rare earth element extraction, offering economic and environmental solutions to pressing global demands.
This dataset provides access to data from personnel records of miner employment from 1900–1919. Records from the Utah Copper Company are handwritten and contain the following employee information: name, date employed, address, dependents, age, weight, height, eyes, hair, gender, and nationality. Data has been transcribed and released as a .tsv (Tab Separated Values) file. Technical metadata has been redacted.
This dataset encompasses the results of a series of controlled experiments conducted at the University of Utah's Industrial Hygiene Research Laboratory between November 2021 and November 2022. It includes data from tests assessing aerosol containment and surface contamination using the U-COVER device. The dataset details the effectiveness of different device designs (D1A, D1B, D2) in containing salt aerosols under various conditions, including with and without exhaust ventilation. Measurements were conducted using GRIMM Model 1.109 Portable Aerosol Spectrometers and analyzed for particle size distributions and concentrations. The findings provide insights into the protective capabilities of the U-COVER device in medical settings, with implications for healthcare worker safety."
Objectives: Falls in hospitals pose a significant safety risk, leading to injuries, prolonged hospitalization, and lasting complications. This study explores the potential of augmented reality (AR) technology in healthcare facility design to mitigate fall risk.
Background: Few studies have investigated the impact of hospital room layouts on falls due to the high cost of building physical prototypes. This study introduces an innovative approach using AR technology to advance methods for healthcare facility design efficiently.
Methods: Ten healthy participants enrolled in this study to examine different hospital room designs in AR. Factors of interest included room configuration, door type, exit side of the bed, toilet placement, and the presence of IV equipment. AR trackers captured trajectories of the body as participants navigated through these AR hospital layouts, providing insights into user behavior and preferences.
Results: Door type influenced the degree of backward and sideways movement, with the presence of an IV pole intensifying the interaction between door and room type, leading to increased sideways and backward motion. Participants displayed varying patterns of backward and sideways travel depending on the specific room configurations they encountered.
Conclusions: AR can be an efficient and cost-effective method to modify room configurations to identify important design factors before conducting physical testing. The results of this study provide valuable insights into the effect of environmental factors on movement patterns in simulated hospital rooms. These results highlight the importance of considering environmental factors, such as the type of door and bathroom location, when designing healthcare facilities.
Isotopic data in this database includes 863 samples from 34 papers and three previously published compilations. For each sample, this database provides location, age, and reference information presented in the first columns. Locations are recorded in latitude and longitude (WGS84). The information about the location source uses the same criteria used for the elemental geochemical database (“GPS”, “Figure-Polygon” and “Figure-Point”). Age is provided according to the original source and includes two general scenarios: an age with uncertainty at 2σ level and a general estimation for the age with no associated error. Sm-Nd and Rb-Sr data are based on whole rock analysis. Lu-Hf data are based on zircon analysis. Sm-Nd data includes Sm and Nd in ppm, 147Nd/144Nd and 143Nd/144Nd in ratios, Nd uncertainties at 2σ level, and Nd values in the epsilon notation as presented in the data source. Rb-Sr data include Rb and Sr in ppm; 87Rb/86Sr, 87Sr/86Sr, and initial 87Sr/86Sr in ratios, and Sr uncertainties at 2σ level. Lu-Hf data includes 176Yb/177Hf, 176Lu/177Hf, and 176Hf/177Hf rations and their uncertainties at 2σ level, the initial 176/177Hf ratio, Hf values in the epsilon notation and Hf uncertainties at 1σ and 2σ level, all as presented in the data source. Uncertainties related to the data location and heterogenous data distribution should be considered. Samples for the two batholiths in Mongolia are concentrated in central Mongolia and include Sm-Nd and Lu-Hf data. In the Erguna and Xing’an magmatic provinces, available samples provide mainly Lu-Hf data which are relatively better distributed than in the other regions.
This dataset contains code used to generate and the results of 2D numerical modeling simulations of ambient resonance in damaged rock slopes. All simulations were performed using the Universal Distinct Element Code (UDEC) version 7.0. We simulated progressive damage for three different landslide types: slab toppling, flexural toppling, and planar sliding. For each scenario we simulated several stages of progressive rock slope damage. Subsequently, we recorded the resonance response of the rock slope at each stage by measuring x-direction velocity at one or more measuring points throughout the model.
This data set contains 12-hour manual new snow and liquid precipitation equivalent (LPE) observations collected at the Alta-Collins (CLN) snow-study plot during the 2000–2023 cool seasons (October 1–April 30 with the year defined by the ending calendar year). CLN is located mid-mountain at Alta Ski Area in the Wasatch Range of northern Utah (approximately 111.63889W, 40.57607N) at an elevation of 2945 m.