Search Constraints
Filtering by:
Keyword
simulation
Remove constraint Keyword: simulation
Language
English
Remove constraint Language: English
1 - 3 of 3
Number of results to display per page
Search Results
-
- Description:
- This dataset accompanies the research article entitled, "Etiology-Specific Remodeling in Ventricular Tissue of Heart Failure Patients and its Implications for Computational Modeling of Electrical Conduction," where we quantified fibrosis and performed electrophysiological simulation to investigate electrical propagation in etiologically varied heart failure tissue samples. Included are raw confocal microscopic images, data for extracting and processing the raw images and script to analyze fibrosis and generate meshes for simulation.
- Keyword:
- human, heart failure, cardiac, confocal microscopic images, simulation, and fibrosis
- Subject:
- cardiology
- Creator:
- Drakos, Stavros G., Sachse, Frank B., Kyriakopoulos, Christos P., Bragard, Jean, Greiner, Joachim, Chakkalakkal Sankarankutty, Aparna, Visker, Joseph R., and Shankar, Thirupura S.
- Owner:
- Aparna Sankarankutty
- Based Near Label Tesim:
- Salt Lake City, Utah, United States
- Language:
- English
- Date Uploaded:
- 06/08/2021
- Date Modified:
- 12/08/2023
- Date Created:
- 2019-01-01 to 2020-11-30
- License:
- CC BY NC - Allows others to use and share your data non-commercially and with attribution.
- Resource Type:
- Dataset
- Identifier:
- https://doi.org/10.7278/S50D-BPS8-R06S
-
- Description:
- This study investigates impacts of altering subgrid-scale mixing in “convection-permitting” km-scale horizontal grid spacing (∆h) simulations by applying either constant or stochastic multiplicative factors to the horizontal mixing coefficients within the Weather Research and Forecasting model. In quasi-idealized 1-km ∆h simulations of two observationally based squall line cases, constant enhanced mixing produces larger updraft cores that are more dilute at upper levels, weakens the cold pool, rear inflow jet, and front-to-rear flow of the squall line, and degrades the model’s effective resolution. Reducing mixing by a constant multiplicative factor has the opposite effect on all metrics. Completely turning off parameterized horizontal mixing produces bulk updraft statistics and squall line mesoscale structure closest to a LES “benchmark” among all 1-km simulations, although the updraft cores are too undilute. The stochastic mixing scheme, which applies a multiplicative factor to the mixing coefficients that varies stochastically in time and space, is employed at 0.5-, 1-, and 2-km ∆h. It generally reduces mid-level vertical velocities and enhances upper-level vertical velocities compared to simulations using the standard mixing scheme, with more substantial impacts at 1-km and 2-km ∆h compared to 0.5-km. The stochastic scheme also increases updraft dilution to better agree with the LES for one case, but has less impact on the other case. Stochastic mixing acts to weaken the cold pool but without a significant impact on squall line propagation. It also does not affect the model’s overall effective resolution unlike applying constant multiplicative factors to the mixing coefficients.
- Keyword:
- stochastic, stochastic mixing, WRF, squall line, simulation, weather research and forecasting, and mixing
- Subject:
- Atmospheric Sciences
- Creator:
- Stanford, McKenna, Morrison, Hugh, and Varble, Adam
- Owner:
- MCKENNA STANFORD
- Language:
- English
- Date Uploaded:
- 08/17/2020
- Date Modified:
- 10/29/2024
- Date Created:
- 2019-03-01 to 2020-04-30
- License:
- Public Domain – This data is free of copyright restrictions (e.g. government sponsored data).
- Resource Type:
- Dataset
- Identifier:
- https://doi.org/10.7278/S50DJNGQ6V67
-
- Description:
- We consider a scenario where the small satellites of Pluto and Charon grew within a disk of debris from an impact between Charon and a trans-Neptunian object (TNO). After Charon's orbital motion boosts the debris into a disk-like structure, rapid orbital damping of meter-sized or smaller objects is essential to prevent the subsequent reaccretion or dynamical ejection by the binary. From analytical estimates and simulations of disk evolution, we estimate an impactor radius of 30-100 km; smaller (larger) radii apply to an oblique (direct) impact. Although collisions between large TNOs and Charon are unlikely today, they were relatively common within the first 0.1-1 Gyr of the solar system. Compared to models where the small satellites agglomerate in the debris left over by the giant impact that produced the Pluto-Charon binary planet, satellite formation from a later impact on Charon avoids the destabilizing resonances that sweep past the satellites during the early orbital expansion of the binary.
- Keyword:
- collisions, planet dynamical evolution, Pluto, solar system, planet formation, dwarf planets, simulation, satellite formation, satellite dynamical evolution, and Trans-Neptunian objects
- Subject:
- Astrophysics
- Creator:
- Kenyon, Scott J. and Bromley, Benjamin C.
- Owner:
- BENJAMIN BROMLEY
- Language:
- English
- Date Uploaded:
- 08/03/2020
- Date Modified:
- 10/29/2024
- Date Created:
- 2019-11-15 to 2020-02-20
- License:
- CC BY NC - Allows others to use and share your data non-commercially and with attribution.
- Resource Type:
- Dataset
- Identifier:
- https://doi.org/10.7278/S50D5Q2MFDBT