Search Constraints
1 - 4 of 4
Number of results to display per page
Search Results
-
- Description:
- We analyze a new set of 275 n-body calculations designed to place limits on the masses of the small circumbinary satellites in the Pluto-Charon system. Together with calculations reported in previous papers, we repeat that a robust upper limit on the total mass of the four satellites is ~ 9.5 x 10^19 g. For satellite volumes derived from \nh, this mass limit implies a robust upper limit on the bulk densities of Nix and Hydra, <=1.7 g/cm^3, that are comparable to the bulk density of Charon. Additional calculations demonstrate that satellite systems with mass <= 8.25 x 10^19 g are robustly stable over the current age of the Sun. The bulk densities of Nix and Hydra in these lower mass systems are clearly smaller than the bulk density of Charon. These new n-body\results enable accurate measurements of eccentricity and inclination for Nix, Kerberos, and Hydra that agree well with orbital elements derived from numerical calculations with new HST and New Horizons state vectors. With these new state vectors, Styx has a 37 % larger eccentricity and an 85% smaller inclination, which makes it more prone to gravitational perturbations from Nix.
- Keyword:
- dynamical evolution, Kerberos, Hydra, Nix, Charon, Pluto, planets, satellites, and Styx
- Subject:
- Astrophysics
- Creator:
- Kenyon, Scott J. and Bromley, Benjamin C.
- Owner:
- BENJAMIN BROMLEY
- Based Near Label Tesim:
- Greenbelt, Maryland, United States
- Language:
- English
- Date Uploaded:
- 01/29/2025
- Date Modified:
- 01/29/2025
- Date Created:
- 2022-03-26 to 2025-01-17
- License:
- CC BY NC - Allows others to use and share your data non-commercially and with attribution.
- Resource Type:
- Dataset
-
- Description:
- Using a suite of numerical calculations, we consider the long-term evolution of circumbinary debris from the Pluto--Charon giant impact. Initially, these solids have large eccentricity and pericenters near Charon's orbit. On time scales of 100--1000 yr, dynamical interactions with Pluto and Charon lead to the ejection of most solids from the system. As the dynamics moves particles away from the barycenter, collisional damping reduces the orbital eccentricity of many particles. These solids populate a circumbinary disk in the Pluto-Charon orbital plane; a large fraction of this material lies within a `satellite zone' that encompasses the orbits of Styx, Nix, Kerberos, and Hydra. Compared to the narrow rings generated from the debris of a collision between a trans-Neptunian object (TNO) and Charon, disks produced after the giant impact are much more extended and may be a less promising option for producing small circumbinary satellites.
- Keyword:
- circumbinary, Charon, NASA, Pluto, planetary science, astronomy, satellites, planets, and dynamical evolution
- Subject:
- Astronomy
- Creator:
- Bromley, Benjamin C. and Kenyon, Scott J.
- Owner:
- BENJAMIN BROMLEY
- Language:
- English
- Date Uploaded:
- 02/03/2021
- Date Modified:
- 10/25/2024
- Date Created:
- 2019-11-15 to 2020-02-20
- License:
- CC BY NC - Allows others to use and share your data non-commercially and with attribution.
- Resource Type:
- Dataset
- Identifier:
- https://doi.org/10.7278/S50DSSMBHHXN
-
- Description:
- We consider a scenario where the small satellites of Pluto and Charon grew within a disk of debris from an impact between Charon and a trans-Neptunian Object (TNO). After Charon’s orbital motion boosts the debris into a disk-like structure, rapid orbital damping of meter-size or smaller objects is essential to prevent the subsequent re-accretion or dynamical ejection by the binary. From analytical estimates and simulations of disk evolution, we estimate an impactor radius of 30–100 km; smaller (larger) radii apply to an oblique (direct) impact. Although collisions between large TNOs and Charon are unlikely today, they were relatively common within the first 0.1–1 Gyr of the solar system. Compared to models where the small satellites agglomerate in the debris left over by the giant impact that produced the Pluto-Charon binary planet, satellite formation from a later impact on Charon avoids the destabilizing resonances that sweep past the satellites during the early orbital expansion of the binary.
- Keyword:
- Charon, planets, Pluto-Charon binary planet, debris, simulations, Pluto, satellites, Trans-Neptunian Object, and TNO
- Subject:
- Astronomy and Astrophysics
- Creator:
- Kenyon, Scott J. and Bromley, Benjamin C.
- Owner:
- BENJAMIN BROMLEY
- Language:
- English
- Date Uploaded:
- 07/07/2020
- Date Modified:
- 10/29/2024
- Date Created:
- 2019-11-01 to 2020-04-30
- License:
- CC BY NC - Allows others to use and share your data non-commercially and with attribution.
- Resource Type:
- Dataset
- Identifier:
- https://doi.org/10.7278/S50D4AKFQZFC
-
- Description:
- . . .
- Keyword:
- Charon, NASA, Pluto, astronomy, satellites, stability, dynamical evolution, and planets
- Subject:
- astronomy, Charon, and planets
- Creator:
- Bromley, Benjamin C. and Kenyon, Scott J.
- Depositor:
- BRIAN MCBRIDE
- Owner:
- BENJAMIN BROMLEY
- Language:
- English
- Date Uploaded:
- 07/11/2019
- Date Modified:
- 10/03/2024
- Date Created:
- 2018-05-15 to 2018-12-14
- License:
- CC BY NC - Allows others to use and share your data non-commercially and with attribution.
- Resource Type:
- Software or Program Code and Dataset
- Identifier:
- https://doi.org/10.7278/s50d-w273-1gg0